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SUMMARY 

A two-dimensional discrete vor tex  model was app l i ed  to turbulen t   f low over 
a c a v i t y  a t  a Reynolds number based on   cav i ty   ha l f - length  of approximately 
5 x 1 05. These m o d e l  p r e d i c t i o n s  are canpared  with new experimental  data, both 
on a time-average  and  on a spectral basis. The compar isons   ind ica te   tha t   the  
vor tex  model reasonably  reproduces  the mean v e l o c i t y   p r o f i l e s  of t h i s  canplex 
flow, w h i l e   t h e   t u r b u l e n t   i n t e n s i t y  and  Reynolds stress p r o f i l e s  are g e n e r a l l y  
overpredicted  in  magnitude. Spectral ana lyses  show t h a t   t h e   w r t e x  model in t ro -  
duces  unreal is t ic   low-frequency power which becomes less dominant as t h e  model 
becomes more disordered. I n  t h i s  state, the  spectral power d i s t r i b u t i o n  of t h e  
model is nea r ly   i n   ag reemen t   w i th  t h a t  of t he  data, being somewhat too low a t  
the  higher  frequencies  and too high a t  t h e  lower frequencies .  The model is also 
shown to be capable of reproducing   the   cav i ty  feedback o s c i l l a t i o n  phenomenon. 
These results i n d i c a t e  tha t  even   i n  a turbulent   f low,  part of t h e  flow is nea r ly  
determinis t ic ,   "determined" by t h e  i n i t i a l  and  boundary  conditions  on  the flow. 
This  is the part of the  flow which is represented  by such  m r t e x  models and is 
probably what  has come to be called the   " l a rge - sca l e   s t ruc tu re"  of t h e  flow. 
Th i s  s t u d y   s u g g e s t s   t h a t   v o r t e x  models merit further research  as a means of sim- 
u l a t i n g   t u r b u l e n t  flow and ca l cu la t ing   t he   r e su l t i ng   no i se   gene ra t ion .  

INTRODUCTION 

Computation of t h e  noise   genera ted  by a f l u i d  flow from t h e  dynamic 
behavior of the  flow itself has  been a goal  of the   ae roacous t i c   comuni ty   eve r  
s i n c e   t h e   o r i g i n a l   f o r m u l a t i o n  of the r e l e v a n t   t h e o r y   b y   L i g h t h i l l   i n  1952 
(ref. 1 ) .  Th i s  e f for t  has  been  hampered  by many factors,  p a r t i c u l a r l y  by t h e  
fact  t h a t   t h e  acoustic sources  depend on the   non l inea r  terms of the  Navier- 
Stokes equat ions ,  t h a t  sound,  being a dynamic process,   depends on the time- 
va ry ing   s t ruc tu re  of t h e  f l o w ,  and t h a t  most flows of p r a c t i c a l   i n t e r e s t  are 
randan  in  character. Thus, it has been o n l y   r e c e n t l y   t h a t  serious a t tempts  t o  
c a l c u l a t e  sound  product ion   d i rec t ly  from a d e s c r i p t i o n  of t h e  flow itself have 
been made. 

The major advance in   t he   unde r s t and ing  of f l u i d  mechanics  which may f i n -  
a l l y  make such   canpu ta t ion   f eas ib l e  was the   d i scove ry  (or red iscovery)   o f   l a rge-  
scale s t r u c t u r e s   i n  a t u r b u l e n t  j e t  by Crow and Champagne ( r e f .  2) i n   t h e   e a r l y  
1970's.  Since  t h a t  time, such  s t ructures   have also been  observed  in  mixing 
l a y e r s  and  boundary l a y e r s   o v e r  a wide range of Reynolds numbers.  While t h e  
role of t h e s e   s t r u c t u r e s   i n  the genera t ion  of sound is still being debated, it 
is g e n e r a l l y  agreed t h a t   t h e y  are r e s p o n s i b l e   f o r  much of t h e  dynamics  of  the 
flow itself. Thus,  they allow one to approach  the  temporal  flow d e s c r i p t i o n  
without   being  concerned  with  the total  range of scales p r e s e n t   i n   t h e  complete 
flow;  insofar as t h e   l a r g e  scales  are dominant,   the most important aspects of 
t h e  flow can still  be described. 



One method  of a t tempt ing  to d e s c r i b e   t h e   l a r g e - s c a l e  flow s t ruc tu re   has  
been t h e   d i s c r e t e   v o r t e x  model which r e p r e s e n t s   t h e   f l o w   v o r t i c i t y  by a collec- 
t i o n  of v o r t e x   s i n g u l a r i t i e s  whose evolu t ion  is governed  by  the  Biot-Savart law. 
Such  models  have  been  developed by  Acton (ref. 3 ) ,  Clements  (refs. 4, 5, and 6 ) ,  
Chorin  ( ref .  7 ) ,  Dowling (ref. 8 ) ,  Davies  and  Hardin  (ref. 9 ) ,  and  Leonard 
( r e f .  l o ) ,  to name but  a few. F u r t h e r ,   u t i l i z i n g   t h e   e q u i v a l e n t   o f  Powell's 
theory  of   vortex  sound  ( ref .  l l ) ,  s e v e r a l   i n v e s t i g a t o r s   ( r e f s .  12, 13,   14,   15,  
and 16)  have shown t h a t  sound  generation by t h e s e  models may e a s i l y  be cmputed.  
However, such models are b a s i c a l l y   d e t e r m i n i s t i c .  Thus, it has  not  been clear 
s x a c t l y   i n  what s ense   t hey  model a t u r b u l e n t   f l o w   f i e l d .  

Experimental   turbulent  data and model p red ic t ions   have   been   quan t i t a t ive ly  
canpared  with  varying  degrees of success. For example,  Chorin (ref. 7)  has 
shown good agreement  between  measured  and  predicted  drag  coefficients  for a cyl-  
inder  in  uniform  flow  over a wide range  of  Reynolds  numbers.  Acton  (ref. 3) 
obtained  reasonable   comparisons  for ,   the   growth rate of a two-dimensional  shear 
l a y e r  when t h e   f i n i t e   t h i c k n e s s  of t h e   l a y e r  is modeled with care. Clements  and 
Maul1 ( r e f .  5) found  good  agreement  for  the  Strouhal number and base pressure  
produced  by  vortex  shedding  behind a blunt-based body, a l t h o u g h   t h e   c a p a r i s o n  
deteriorated d rama t i ca l ly  when t h e  base included a cav i ty .  They also obtained 
f a i r   p r e d i c t i o n s  of t h e  mean ve loc i ty   p ro f i l e s   fo r   f l ow  ove r  a s t e p .   F i n a l l y ,  
Ashurst (ref. 1 7) showed t h a t  a vo r t ex  model tended to o v e r p r e d i c t   t h e   t u r  bu- 
l e n t   i n t e n s i t i e s   a n d   R e y n o l d s  stress i n  a turbulen t   mix ing   layer ,   a l though  the  
comparison could be g r e a t l y  improved  by t a k i n g   t h e   d i f f u s i o n  of t h e  vor tex  
cores in to   account .  

I n   t h i s  paper, t h e   f l o w   f i e l d  produced by  such a vo r t ex  model is compared 
with new experimental  data for high  Reynolds number flow over a cavi ty .   These 
data were obta ined  as a p a r t  of   an  extensive  s tudy  of   cavi ty   noise   generat ion 
carried o u t  a t  NASA Langley  Research  Center (refs. 18,   19 ,  and 2 0 ) .  C a p a r i s o n  
is made on a s p e c t r a l  as well as on a time-average basis. This   s tudy   no t   on ly  
assesses t h e   v a l i d i t y  of vortex  modeling b u t  may also aid in   t he   unde r s t and ing  
o f   t h e   l a r g e - s c a l e   s t r u c t u r e  of turbulent   f lows.  

The vor tex  model u t i l i z e d   i n   t h i s  w o r k  was developed  by  Hardin  and Mason 
( r e f .  14) t o  compute  sound  generated by f low  over  a cav i ty   i n   an   ae rodynamic  
surface. This  two-dimensional model is based upon a Schwar z - C r i s t o f f e l   r e l a t i o n  
which  transforms  the  cavity  geometry  onto a plane  and  thus allows t h e   i n v i s c i d  
cavi ty   f low t o  be obta ined  from the  canplex  potent ia l   for   uniform  f low.  The 
shear   l ayer  formed  by f low  over   the  cavi ty   leading  edge is then  described by t h e  
i n s e r t i o n  of discrete vor t i ce s .  One w r t e x ,  whose c i r c u l a t i o n  is determined by 
a p p l i c a t i o n  of t he   Ku t t a   cond i t ion  a t  the   l ead ing   edge ,  is inser ted   dur ing   each  
small time i n t e r v a l .  The pos i t i on  of t he   vo r t i ce s   i n   t he   t r ans fo rm  p l ane  is 
then  obtained by numerical   inversion of the   t ransformat ion .  The boundary con- 
d i t i o n  of zero  normal  velocity a t  t h e  walls is s a t i s f i e d  by t h e   i n c l u s i o n  of 
image vo r t i ce s .  A vor tex   decay   func t ion  is u t i l i z e d   i n   a n   a t t e m p t  to  include 
t h e   p h y s i c a l   e f f e c t s  of t h e   n o   s l i p   c o n d i t i o n .  T h i s  parameter is found t o  be 
c r i t i ca l  i n  order f o r   t h e  model to e x h i b i t   t h e  correct mean ve loc i ty .  A wr- 
t i c i t y   s t r e t c h i n g  mechanism is also employed to simulate t h e   t r a n s f e r  of turbu-  
l e n t   e n e r g y  to t h e   t h i r d  dimension. The dynamic  behavior  of  the flow can   then  
be followed by s e q u e n t i a l   s o l u t i o n  of the   govern ing   f low  equat ions   in  time. 
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DEVELOPMENT OF QDVERNING EQUATIONS 

Consider flow over a two-dimensional  cavity as shown i n   f i g u r e  1 ,  t h a t  is, 
a flow, which f a r  from any  surf ace has a f ree-s t ream  ve loc i ty  Uo and sweeps 
over a c a v i t y  of l e n g t h  L and  depth D. This  flow,  of course, induces a 
complicated motion  within  the  cavi ty   which is the   p r imary   i n t e re s t  of t h i s  
a n a l y s i s  . 

The symbols used i n   t h i s  paper are def ined  in   the  appendix.  

Nondimensional  Equations  for Flow Var iab les  

I n   t h i s   a n a l y s i s ,  where t h e   f l u i d  is taken to be incompressible and a l l  
v a r i a b l e s  are nondimens iona l ized   by   the   f ree-s t ream  ve loc i ty ,   cav i ty   ha l f -  
l ength ,  and f l u i d  d e n s i t y ,   t h e   f l a w   f i e l d  is governed  by  the  Navier-Stokes 
equat ions:  

and 

au i aui aP a2u - + u j - = - - + a  
a t  ax axi axj  axj 

where U i  a r e  the  total  v e l o c i t y  components, p is the  t o t a l  pressure, CL is 
the  inverse  of the  Reynolds number  of the  flow, and   the   E ins te in  summation  con- 
vent ion is employed.  These  equations  govern  the complete flow f i e l d  and  can, 
i n   p r i n c i p l e ,  be solved for r e a l i z a t i o n s  of tu rbu len t  flow rega rd le s s  of t h e  
Reynolds number (ref. 21 ) . However, t h i s  approach becomes v e r y   c o s t l y   i n  com- 
puter   resources   as   the  Reynolds  number inc reases   ( r e f .  22) .  Thus, t h e   o n l y  
feasible approach is to employ some sor t  of subgrid-scale  modeling  (ref.  23) 
and to so lve   on ly   fo r   t he   l a rge r  scales. I t  is i n   t h e   s p i r i t  of t h i s  type of 
so lu t ion   tha t   d i scre te   vor tex   model ing  is best understood. 

Stream-Functionflorticity Formulation 

The discrete vortex  technique u t i l i z e s  a stream-function/vorticity for- 
mulation  of  the  governing  equations.  Assume t h a t  t he  total f l o w   f i e l d  is t w o -  

dimensional; tha t  is, U3 = 0 and - = 0. Then, t h e r e  is only  one  nonzero 

component  of v o r t i c i t y   i n   t h e  f l o w :  

a 
3x3 

au2 au, 
ax, ax2 

Q="- (3 )  
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which, from equat ion   (2) ,  m u s t  s a t i s f y  

DQ - = O! Q2Q 
D t  

where 

~a a a 
- = -  + u 1  - + u 2 -  
D t  a t  3x1 8x2 

and 

I f  a stream func t ion  $ is also introduced  such  that  

then  equat ion (1)  is s a t i s f i e d  and equat ion (3) becomes 

V2$ = -R (5) 

Equations (4 )  and (5) r e p r e s e n t   t h e  stream-function/vorticity formula t ion   u t i -  
l i z e d   i n   t h e  discrete vor tex   so lu t ion   technique .  

DISCRETE VORTEX WDEL 

The discrete vor tex  model u t i l i z e d   i n   t h i s   s t u d y  was developed  by  Hardin 
and Mason ( r e f .  1 4 )  fo r   eva lua t ion  of cav i ty   no i se   p roduc t ion .  Thus, only  a 
b r i e f   d e s c r i p t i o n  is i n c l u d e d   i n   t h i s  paper. After   nondimensional izat ion,   the  
cavi ty   geometry  appears  as shown i n   f i g u r e   2 ( a ) ,  where d = 2D/L. I f   t h e  com- 
p lex   va r i ab le  z = x + i y  is in t roduced ,   t he   cav i ty  surface may be transformed 
o n t o   t h e  rea l  a x i s  of t h e  A-plane shown i n   f i g u r e   2 ( b )  by the   t r ans fo rma t ion  

E[sin-lX,sin-l (l/a)l 
z =  
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where X = 5 + in , E [ , ] is the incomplete e l l ipt ic   integral  of the sec- 
ond kind, and E[ is the  canplete e l l ipt ic   integral  of the second kind. 
The points X = +a are  the  transforms of the  exterior  cavity  corners a t  
z = “1 + id. 

Solution Technique 

With t h i s  transformation,  the  discrete  vortex  solution  for  the flow field 
is readily obtained. The governing equations  are  equations (4) and (5) which 
m u s t  be solved subject to  the boundary conditions 

u1 = u2 = 0 

on the  cavity  surface. The solution uses the  idea of  an impulsive s ta r t  
(ref. 4) w i t h  the in i t i a l  condition 

u1 = u2 = 0 

everywhere. 

NOW, for  the  case of interest i n  t h i s  paper , the Reynolds number  of the 
flaw is large; t h u s  a (the  inverse of the Reynolds  number) is small. As a 
approaches zero,  equation (4 )  becomes 

which implies that  vorticity is conserved as it mves about i n  the flow; that 
is, wr   t i ca l  f l u i d  tends to remain vortical. Thus, a t  some time t, one can 
imagine the flow region  divided into  small elements and the  total  vorticity i n  
each element  replaced by a  discrete  vortex such that  the  circulation around the 
element is conserved. These discrete  vortices would then interact wi th  each 
other according to the Biot-Savart law to  represent  the  evolution of the vor- 
t ici ty  distribution. T h i s  solution technique has been analyzed by Hald  and 
Del Prete  (ref. 24) who have shown that it converges, at   least  for  short times, 
as the size of the elements is reduced. 

Thus, for  small a ,  the flaw vorticity may be represented by a  collection 
of discrete  vortices 

v” 
N 



where 6( ) is t h e  Dirac delta func t ion ,  I'i is t h e   c i r c u l a t i o n  of t h e   i t h  
vortex  which is located a t  the   po in t  z = Z i t  and N is t h e  number of vor- 
tices i n   t h e  flaw a t  time t. Equation (5) is t h e n   s a t i s f i e d  by the  imaginary 
part of t h e  complex p o t e n t i a l  

where X i  are the   t ransforms of t h e   v o r t e x   p o s i t i o n s   z i  and 

The f i r s t  term BX is t h e  ideal ( inviscid)   f low  solut ion  and  the  second sum 
c o n s i s t s  of image vo r t i ce s   necessa ry  to s a t i s f y   t h e   c o n d i t i o n  of  no flow through 
t h e   c a v i t y  w a l l s .  The v e l o c i t y   f i e l d  may then  be obta ined  by d i f f e r e n t i a t i o n  

de 
U1 - iU2 = - 

dz  

and  the  motion  of  the  vortices  followed by numerical in t eg ra t ion .  

To s a t i s f y   t h e   i n i t i a l   c o n d i t i o n  of i n t e r e s t ,   t h e   f l a w  is s tar ted a t  t = 0 
a t  which time it separates a t  t h e   c a v i t y   l e a d i n g   e d g e   a n d   s h e d s   w r t i c i t y   i n t o  a 
shear   l ayer .  A t  each time s t e p  A t ,  t h i s   v o r t i c i t y  is rep laced  by a discrete 
vor tex  whose c i r c u l a t i o n  is chosen  such  that   the   Kutta   condi t ion is s a t i s f i e d  
a t  the  leading  edge.  

This  is the   so lu t ion   t echn ique  which w a s  deve loped   in   re fe rence  14 .  I n  
t h e   p r e s e n t   a n a l y s i s ,   t h r e e  
better model the   phys ics  of 
v i s c o s i t y  of  flow  for  which 
three-dimensional i ty   of   the  

extensions  of   this   technique  have  been made to  
the  f low. Two of t h e s e  are concerned  with  the 

flow. 
CY is small but   nonzero  and  the  third  with  the 

Models f o r  Flaw Physics  

The f i r s t   e x t e n s i o n  results f r m  an idea of Chor in   ( re f .  7 ) .  For nonzero 
v i scos i ty ,   equa t ion  (4 )  is just a d i f f u s i o n   e q u a t i o n   i n  a moving medium. Thus, 
i n   each  time step A t ,  t h e   e f f e c t  of t h e   r i g h t  side may be approximated  by 
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adding to t h e  motion of t h e  vortices small random displacements  Ax and Ay 
such   t ha t  

and 

where < > is the   expec ta t ion   ope ra to r .   Th i s   t echn ique   l eads  to a t i g h t e r  
r o l l u p  of t h e   i n i t i a l   v o r t e x   s h e e t  and has  been shown to y i e l d  better agree- 
ment with  experiment (ref. 17 ) .  

The second  extension of re ference  1 4  was suggested by t h e   o b s e r v a t i o n   t h a t  
t h e   n o   s l i p   c o n d i t i o n  on t h e   c a v i t y  walls cannot be s a t i s f i e d  by t h i s  semi- 
i n v i s c i d   s o l u t i o n   t e c h n i q u e .   I n   a c t u a l i t y ,   t h i s   c o n d i t i o n  causes pos i t ive   vor -  
t i c i t y  t o  be genera ted   a long   the  walls of t h e   c a v i t y  which  tends to cance l  o u t  
some of the   l a rge   nega t ive   vo r t i c i ty   p roduced   i n   t he   shea r   l aye r .   I n   an  attempt 
to i n c l u d e   t h i s   e f f e c t   i n  a s i m p l e   f a s h i o n ,   t h e   c i r c u l a t i o n  of  each of t h e   d i s -  
crete v o r t i c e s  was taken to be a func t ion  of time 

r i  (t.) = r i ( t i )  + K ( t  - ti) 

where ti is t h e  time a t  wh ich   t he   i t h   vo r t ex  was formed, r i ( t i )  is t h e   i n i -  
t i a l  c i r c u l a t i o n   d e t e r m i n e d   f r a n   t h e  K u t t a  condition,  and K is t h e   c i r c u l a t i o n  
decay rate. When t h e   c i r c u l a t i o n  becomes zero, t h e   v o r t e x  is removed f rom  the  
ca lcu la t ion .   This  parameter also models, i n  a sense ,   t he   v i scous   d i s s ipa t ion   o f  
tu rbulen t   energy   in   the   f low.  

The f ina l   change   i n   t he  model of re ference  1 4  attmpts to accoun t ,   i n   an  
e lementary   fash ion ,   for   the   th ree-d imens iona l i ty  of the   f low.   S ince   in  t w o  
d i m e n s i o n s ,   t h e   m r t e x   s t r e t c h i n g  term of the  Helmholtz   equat ion is i d e n t i -  
c a l l y   z e r o ,   t h e r e  is no mechanism i n   t h e  model f o r   t h e   t r a n s f e r  of  energy to  
t h e   t h i r d  dimension.  However, i n   r e a l i t y ,   t h e  vortices formed  by the   shear  
l a y e r  over t h e   c a v i t y  are no t   i n f in i t e ly   l ong ,   bu t   have   l eng th  equal to t h e  
cavi ty   wid th  W and are bounded  by t h e   c a v i t y  walls. Such a f i n i t e - l e n g t h  
vor tex   does   no t   genera te   the  same v e l o c i t y  a t  a l l  p o i n t s   e q u i d i s t a n t  from it, 
as does a m r t e x   f i l a m e n t .   I n   f a c t ,   f o r   t h e  geometry of f i g u r e   3 ( a ) ,  it can  
be shown t h a t   t h e   v e l o c i t y  V induced  by the  vortex  segment  a t  t h e   p o i n t  P 
is given by 

r v = -(cos a' + cos 8 ' )  
4mh 
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Now, suppose t w o  s t ra ight   vor tex   segments ,   say  n and k, are i n i t i a l l y  
separated by a d i s t a n c e  h. Over a small time i n t e r v a l  A t ,  t h e   v e l o c i t y  
induced  on  vortex k by vor tex  n s t r e t c h e s   v o r t e x  k i n t o  a curved  shape 
as shown i n   f i g u r e   3 ( b ) .  From equat ion  (91, it can  be determined t h a t   t h e  ten- 
ter p o i n t  of vo r t ex  k has moved a d i s t a n c e  R f a r t h e r   t h a n  its end p i n t s  
where 

R =  

f o r  h << w. 

rn  f 2 1 rn A t  

=\l + (2h/W)2]1/2 [l + (h/W) 2] 
- 

Thus ,   t he   vo r t i c i ty  of vortex k ,  which was o r i g i n a l l y  a l l  i n   t h e  
d i r e c t i o n  of t he   cav i ty   w id th ,  now has  components i n   b o t h   t h a t   d i r e c t i o n  and i n  
t h e  xy-plane, as shown i n   f i g u r e  3 (b) . The e f f e c t  of t h i s   e n e r g y   t r a n s f e r  is 
inc luded   i n   t he  model by r e e v a l u a t i n g   t h e   c i r c u l a t i o n  of each  vortex a t  every  
time s t ep   t h rough   t he   r e l a t ion   deve loped   w i th   t he   he lp   o f   equa t ion  (1 0 )  , 

W 

where the   n th   vo r t ex  is taken  as the  one closest to vor tex  k and h is t h e  
d i s t a n c e  between them. The small component of v o r t i c i t y   i n   t h e  xy-plane is 
neglec ted   in   subsequent   ca lcu la t ions .  Note t h a t   e q u a t i o n  (1  1 ) h a s   a n   e f f e c t  
similar to t h a t  of equat ion  (9), but arises through a d i f f e r e n t   p h y s i c a l  
mechanism. 

EXPERIMENTAL RESULTS 

The flow  measurements  around  the  cavity were performed  in   the  open j e t  
anechoic  flow f a c i l i t y  a t  the  NASA Langley aircraft  noise   reduct ion   labora tory  
in   con junc t ion   w i th   acous t i c  measurements.  The c a v i t y   a p p a r a t u s  is shown i n  
f i g u r e  4. I t  has a con t inuous ly   va r i ab le  streamwise l e n g t h  L ,  two va lues   fo r  
t he   dep th  D of 3.1 9 c m  and 5.11 cm, and a f ixed   wid th  W of 5.08 cm. The 
v a r i a b l e   l e n g t h  for each of these  depths  w a s  accomplished by t h e   s l i d i n g  blocks 
shown i n   f i g u r e  4. The cav i ty   appa ra tus  was s e t  i n  a 1.25-cm-thick tempered 
aluminum p l a t e ,   d e p i c t e d   i n   f i g u r e  5,  which was curved downstream of t h e   c a v i t y  
to  e l imina te   t r a i l i ng -edge   no i se   e f f ec t s .  The plate  was f l u s h   w i t h   t h e  lower 
l i p  of the   nozz le   ( seen  also i n   f i g .  4) . The leading  edge of t h e   c a v i t y  was 
about 5.5 c m  f r m   t h e  l i p  of the  nozzle  which  measured 30 cm by 45 cm. Nozzle 
e x i t  Mach number varied  from 0.11 6 t o  0.362.  The t u r b u l e n c e   i n t e n s i t y   i n   t h e  
nozzle  f low was about 1 percent .  The v e l o c i t y   p r o f i l e  a t  t h e   n o z z l e   e x i t  had 
less than  a 1.5-percent  overshoot  and a boundary-layer  thickness of 0.5 cm a t  
t h e  maximum veloc i ty .   This   cor responds  to a 0.61-cm th i ckness  a t  t h e   l e a d i n g  
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edge  of  the  cavity,  assuming a t u r b u l e n t  boundary l aye r   p rog res s ing  over a 
f l a t  plate. The corresponding momentum th ickness  is 0.059 cm. Th i s   ag rees  
wi th   t he  momentum thickness  which was ca l cu la t ed  from t h e  mean v e l o c i t y   p r o f i l e  
for t h i s   v e l o c i t y  near the  leading  edge  of   the  cavi ty .  

Table I lists t h e   c a v i t y   c o n f i g u r a t i o n s ,  test Mach numbers,  and measure- 
ment l o c a t i o n s   f o r   t h e   v e l o c i t y   s u r v e y s .  The f i v e  cases, or cavi ty   conf igura-  
t i ons ,   r ep resen ted   t h ree  values of length-to-depth ratio: 0.78 for a r a t h e r  
deep   cav i ty ,  5.01 for a r e l a t ive ly   sha l low  cav i ty ,  and  2.35 as an in te rmedia te  
value. Data were obta ined  a t  t h r e e   v e l o c i t i e s   f o r   e a c h  of t h e s e  cases. Flaw 
p r o f i l e s  were obta ined   in   the   middle  of the   cav i ty   w id th   nea r   t he   l ead ing   and  
t r a i l i n g   e d g e s   e x c e p t   f o r  cases 1 and 3 where  only  the  leading-edge  prof i les  
were obtained.  The pos i t i ons   o f   t he   ve loc i ty   su rveys  are g i v e n   i n   t h e  l a s t  
two columns  of t a b l e  I i n  terms of t h e   d i s t a n c e   i n   c e n t i m e t e r s  from the   l ead-  
ing  edge of the   cav i ty .  

A cross-wire (x-shaped  hot-wire) anemometer was used to  measure t h e  veloc- 
i t y   p r o f i l e s .  The wires were p l a t i n m p l a t e d   t u n g s t e n ,  0.0038 mm in   diameter  
and  1.25 mm i n   l e n g t h ,  and were ope ra t ed   i n   t he   l i nea r i zed   cons t an t - t empera tu re  
mode. Time h i s t o r i e s  of t h e  x- and  y-canponents  of  the  velocity were recorded 
and  subsequently  analyzed by  computer. The d a t a  were corrected  according to  
re ference  25 f o r  errors due to tu rbu lence   non l inea r i t i e s   and   i r r egu la r   coo l ing  
(no t   fo l lowing   t he   cos ine  law). The error i n   t h e  mean measurements is less 
than 3 percent .  R e s u l t s  p resented   inc lude  mean v e l o c i t y   p r o f i l e s ,   t u r b u l e n c e  
i n t e n s i t y   p r o f i l e s ,  and mean Reynolds stress p r o f i l e s   f o r   e a c h  case and test  
ve loc i ty .  A few spectra are also presented.  These results  are normalized  by 
the   f ree-s t ream  ve loc i ty  Uo which was taken to  be t h e  j e t  e x i t   v e l o c i t y .  

The mean v e l o c i t y   p r o f i l e s  are shown i n   f i g u r e  6. When normalized  by  the 
f ree-s t ream  ve loc i ty ,   the  profiles f o r  a particular case and streamwise posi- 
t i o n  are generally  independent  of Mach number, the   except ion   be ing  a t  t h e  
t r a i l i n g  edge f o r  case 2. Evident ly ,   the   values   exceeding U1/Uo = 1 indi-  
cate t h a t   t h e   v e l o c i t y   o v e r s h o o t s  its asymptotic  value  which would be measured 
a t  larger   values   of  Y. Near the  leading  edge,   the  mean v e l o c i t y  a t  Y/D = 1 
is nominally 0.55U0; near t h e   t r a i l i n g   e d g e ,   t h i s  value inc reases  to  0.65U0. 
Al though  the   shear   f low  ins ide   the   cav i ty  is  developing   and   cannot   s t r ic t ly  be 
cons ide red   s e l f - s imi l a r ,   t he   sp read ing  rate determined  from  the mean v e l o c i t y  
p r o f i l e s   n e a r   t h e   l e a d i n g  and t r a i l i n g   e d g e s  is c o n s i s t e n t   w i t h   t h a t   f o r   s e l f -  
similar s h e a r   l a y e r s  as g iven   i n   r e f e rence  26. 

- 

The t u r b u l e n c e   i n t e n s i t y  profiles are g i v e n   i n   f i g u r e  7.  The leading-edge 
measurements  for cases 1 and 3 are shown i n  f igu re   7 (a ) .   Fo r   t hese  two cases, 
where t h e   c a v i t y   l e n g t h  is small (or where t h e   c a v i t y  is cons idered   deep) ,   the  
p r o f i l e s  of t h e  streamwise and cross-stream t u r b u l e n t   v e l o c i t y   f l u c t u a t i o n s ,  
u1 and u2 r e spec t ive ly ,  have t h e  same shape  with  the maximum occurr ing  a t  
Y/D = 1.  For cases, 2, 4, and  5, shown i n   f i g u r e s  7 ( b ) ,   7 ( c ) ,  and 7 ( d ) ,  respec- 
t i v e l y ,   t h e  u2 p r o f i l e s  a t  the  leading  edge are similar to those   ob ta ined  
i n  cases 1 and 3 i n   t h a t   t h e  maximum value  occurs  a t  Y/D = 1 . However, t h e  
u1 p r o f i l e   d e p a r t s  from t h i s   s h a p e  a t  the  leading  edge by maintaining  high 
levels o f   t u rbu lence   i n t ens i ty  down i n t o   t h e   c a v i t y .  A t  t he   l ead ing   edge ,   t he  
t h e  maximum t u r b u l e n c e   i n t e n s i t y   l e v e l  for a l l  cases is nominally 9 percent .  
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A t  t h e   t r a i l i n g   e d g e ,   t h e  cross-stream t u r b u l e n c e   i n t e n s i t y   l e v e l   r e a c h e s  
13   pe rcen t  a t  Y/D = 1 , whi le   t he  streamwise t u r b u l e n c e   i n t e n s i t y   l e v e l   r a n g e s  
from 15   pe rcen t  to 20 percent .  

The mean Reynolds stress p r o f i l e s  are g i v e n   i n   f i g u r e  8. A t  t h e   l e a d i n g  
edge,   the  maximun always occurs a t  Y/D = 1 . A t  t h e   t r a i l i n g   e d g e ,   t h e  loca- 
t i o n  of t h e  maximum (negat ive)   va lue   var ies  from o u t s i d e  t o  i n s i d e   t h e   c a v i t y  
depending   on   the   ve loc i ty   and   cav i ty   conf igura t ion .  

S ince   t he   t u rbu lence   i n t ens i ty   l eve l s   and  mean v e l o c i t y  profile shape 
change  with  cavi ty   configurat ion  and,  sometimes, with  f ree-s t ream  veloci ty ,  it 
is d i f f i c u l t  to make canparisons  with data o b t a i n e d   i n   c a v i t i e s  of d i f f e r i n g  
conf igu ra t ion  and test  condi t ions.   Hmever ,  it should be poin ted  o u t  t h a t   t h e  
measurements  reported  herein are cons i s t en t   w i th   t hose  of re ference  27 i n   t h a t  
t h e   p r o f i l e s  agree and t h e   l e v e l s   f a l l   i n   t h e  same range.  Reference 27 con- 
t a i n s  the  only  other  measurements of t h e   t u r b u l e n c e   i n t e n s i t y   p r o f i l e s   i n s i d e  
the   cav i ty   t ha t   t he   au tho r s   found .  

The spectral  d e n s i t i e s  of t h e   v e l o c i t y   f l u c t u a t i o n s   o b t a i n e d  from t h e  
recorded time h i s t o r i e s   f o r  case 2 a t  124 m / s  are shown i n   f i g u r e  9. These 
results  are t y p i c a l  of t h e  spectra measured i n   t h e   c a v i t y .  The a n a l y s i s  band- 
w i d t h   f o r   t h e s e  spectra is 30 Hz and each  spectrum  has a t  l eas t  240 degrees of 
freedom. Out s ide   t he   cav i ty  (Y/D = 1.45) , t h e   t o n a l  aspects of the  feedback 
phenomenon are c l e a r l y   s e e n   i n   b o t h   t h e  u1 and u2 spec t ra .  A s  the   hot-wire  
probe   descends   in to   the   cav i ty ,   the  spectra take on a mre broadband  appear- 
ance,   a l though  the u2 spectra  remain  predominantly peaked. The maximum root- 
mean-square values   of   the   veloci ty   occur  when Y/D = 1. I n s i d e   t h e   c a v i t y  
(Y/D = 0.6) , the   tonal   appearance of t h e  spectra has faded i n   r e l a t i o n  to  t h e  
broadband spectra of the   tu rbulen t   f low.  

COMPARISON OF KIDEL Rf3SULTS WITH EXPERIMENT 

The experimental  case chosen  for   canparison  with  the  vortex model is case 2 
of table  I a t  t h e   h i g h e s t   v e l o c i t y  of 124.2 m/s.  For t h e s e  data, L/D = 2.35 
which is in   t he   r ange  of values  most commonly s e e n   i n   a i r c r a f t   a p p l i c a t i o n s .  
Fu r the r ,   t he  Reynolds number based on t h e   c a v i t y   h a l f - l e n g t h  is approximately 
5 x 105  which  approaches  that   found on  an a i rc raf t  during  landing  approach.  

The vo r t ex  model was programmed for t h e  parametric values  corresponding 
to  t h i s  case and  run for 1000 time s teps   wi th  a nond imens iona l   s t ep   s i ze  
A t  = 0.05. T h i s   s t e p   s i z e  has been shown by previous work  t o  be a reasonable  
canpromise between integrat ion  accuracy  and  canputat ion time. F igure  1 0  shows 
an   i n s t an taneous   r ea l i za t ion  of t h e  flow f i e l d  f o r  a particular va lue  of non- 
dimensional time af te r  t h e   s t a t i o n a r y  s ta te  has  been  achieved. The symbols 
i n   t h i s   f i g u r e  are cross s e c t i o n s  of t h e   r e c t i l i n e a r   v o r t i c e s .  Note t h a t   t h e  
shear   layer ,   which is i n i t i a l l y   r e p r e s e n t e d  by a l i n e a r   a r r a y  of vortices, 
becomes uns t ab le  and breaks up in to   cohe ren t  masses of v o r t i c i t y  which are 
e a s i l y   d i s c e r n i b l e .   T h e s e   l a r g e s c a l e   s t r u c t u r e s  are then  swept  downstream 
t o  impinge  on t h e   t r a i l i n g  edge  of t he   cav i ty .  Also shown i n   t h e   f i g u r e  are 
t h e  two l o c a t i o n s  a t  which the  experimental  data were taken to  g ive   the  reader 
a phys ica l   f ee l ing  for  the   vo r t ex  model near   these  two pos i t i ons .  
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Mean V e l o c i t y   P r o f i l e s  

I n   f i g u r e  1 1 ,  t h e  mean v e l o c i t y   p r o f i l e s   p r e d i c t e d  by the   vo r t ex  model a t  
t h e  t w o  measurement l o c a t i o n s  are compared wi th   the   exper imenta l   da ta .  The 
vor tex  model results were obta ined  by f i r s t   a l l o w i n g   t h e  model to r u n   u n t i l  a 
s t eady  s ta te  was achieved  and  then  calculat ing time h i s t o r i e s  of t h e   v e l o c i t y  
canponents U1 and U2 a t  t h e   p o i n t s  of interest t h r o u g h   d i f f e r e n t i a t i o n  of 
equat ion  (8). These were then  time-averaged to o b t a i n  estimates of t h e  mean 
v e l o c i t i e s  61 and E2. As can be seen ,   t he re  is reasonable  agreement  between 
t h e   d a t a  and p r e d i c t i o n s   e x c e p t   w i t h i n   t h e   c a v i t y  itself a t  the   t r a i l i ng -edge  
pos i t ion  where t h e  streamwise veloci ty   canponent  is underpredicted  and  the 
cross-stream component is overpredicted.  The reason for t h i s   d i s c r e p a n c y  
appears to be the   th ree-d imens iona l i ty   o f   the   f low  wi th in   the   cav i ty .  

The value of t h e  circulation decay rate c o n s t a n t  K i n  equat ion  (9) was 
chosen to make t h e  6 2  veloci ty   canponent  of the   vo r t ex  model  match t h e   d a t a  
a t  2X/L = -0.8 5 and Y/D = 1 . 0. The i d e a l  f h i d   s o l u t i o n   f o r   t h e   c a v i t y  
flow ( t h e   f i r s t  term i n   e q u a t i o n  ( 8 ) )  r e s u l t s   i n  a negat ive  E2 v e l o c i t y  
component i n   t h i s   r e g i o n .  As can be shown from  equation ( 8 ) ,  i n   t h e   v o r t e x  
model t h i s   n e g a t i v e   v e l o c i t y  is opposed  by a pos i t ive   ve loc i ty   canponent  
induced by t h e   h i g h   v o r t i c i t y   i n   t h e   c a v i t y .   T h e s e  must  balance to  y i e l d   t h e  
near   zero value seen   i n   t he   expe r imen ta l   da t a .   Th i s   necessa ry   ba l ance  is 
r a t h e r   d e l i c a t e ,  and thus   t he  model is q u i t e   s e n s i t i v e  to the   va lue  of K 
employed.  The va lue   used   in   the  model, K = 0.001 25,  was found by t r i a l  and 
error and d i d   n o t   q u i t e  make the   ve loc i ty   match ,  as s e e n   i n   f i g u r e  1 1 .  

T u r b u l e n t   I n t e n s i t y   P r o f i l e s  

I n   f i g u r e  12,  t h e   t u r b u l e n t   i n t e n s i t y   p r o f i l e s   p r e d i c t e d  by t h e   v o r t e x  
model are canpared  with  the  experimental   data .  The va lues   fo r   t he   vo r t ex  
model were aga in   ob ta ined  by t ime-averaging  the  squared  difference  between 
the   s teady-s ta te   ve loc i ty   va lues   and   the   appropr ia te  mean velocities; t h a t  is, 

u i 2  = ( V i  - U i ) 2 .  As can be seen ,   t he   shapes   o f   t he   p ro f i l e s  are g e n e r a l l y  
similar e x c e p t   t h a t   t h e   p r e d i c t e d   p r o f i l e s  a t  t h e   t r a i l i n g - e d g e   p o s i t i o n  p e a k  
s l i g h t l y  below t h e  top of the   cav i ty ,   wh i l e   t he   da t a  p e a k  a t  t h e  top o f   t he  
cavi ty .  The p r e d i c t e d   i n t e n s i t y   l e v e l s  are reasonable   above   the   cav i ty ,   bu t  
tend to  be too high by about  a f a c t o r  of 2 w i t h i n   t h e   c a v i t y   i t s e l f .   T h i s  is 
thought to be because   the   t rue   th ree-d imens iona l   charac te r  of t he   f l ow  in   t he  
cav i ty   has   no t  been well represented  by t h e  model. I t  was assumed t h a t   t h e  
incorporat ion  of   equat ion ( 1  1 )  would h e l p  to a l l e v i a t e   t h i s  problem. However, 
it had n e g l i g i b l e   e f f e c t   e x c e p t  to r educe   t he   va lue   o f   t he   c i r cu la t ion   decay  
c o n s t a n t  K requi red  to o b t a i n   t h e  correct v e l o c i t y   p r o f i l e s .  

- - 

High p e a k s  i n   i n t e n s i t y   c a n  be s e e n   i n   t h e   p r e d i c t e d   p r o f i l e s  a t  t h e   l e v e l  
of t h e   c a v i t y  a t  the  leading-edge  posi t ion.  The major r eason   fo r   t hese  p e a k s  
is t h a t  many of   the  vort ices   being  re leased  f rom  the  leading  edge  of   the  cavi ty  
pass q u i t e  close to t h e   p o i n t  where t h e   v e l o c i t y  is be ing   ca lcu la ted ,  as can  be 
s e e n   i n   f i g u r e  10. Thus, t h e   s i n g u l a r  nature of t h e   v o r t i c e s  causes q u i t e   h i g h  
ve loc i ty   f l uc tua t ions .   In   an   a t t empt  to remedy t h i s   s i t u a t i o n ,   t h e   v o r t i c e s  
were assumed to  have a f i n i t e  core. I f   t h e   p o i n t   o f   i n t e r e s t   f e l l   w i t h i n   t h e  
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core of one of the  vortices,  the  velocity  at  the point  was then computed using 
Routh's rule (eq. ( 9 )  of ref. 14). A s  can be seen i n  figure 12, t h i s  attempt 
was not entirely  successful. The nondimensional vortex  core  size, used i n  a l l  
the  calculations i n  t h i s  paper, w a s  0.002. 

However, as w i l l  be seen later,  the  spectra  at  the leading-edge position 
are dominated by low-frequency power, apparently induced by t h i s  vortex singu- 
l a r i t y  problem.  Also shown i n  figure 12 are  intensity values  obtained by high- 
pass filtering  the  signals  at 110 Hz. Filtering  dramatically reduces the high 
values a t  the  level of the  cavity  at  the leading-edge p s i t i o n ,  while generally 
leading  to  better agreement wi th  the  data elsewhere. 

I n  figure 13, the  predicted Reynolds stress  profiles, ~ 1 ~ 2 ,  a t  both mea- 
- 

surement locations  are compared wi th  the  experimental  data. A s  can be seen, 
both the shapes and levels  agree reasonably  well except at  the  level of the 
cavity  at  the leading-edge position. Here again a large peak appears i n  the 
model, undoubtedly caused by the low-frequency power. 

Spectra 

Also of interest  are canparisons of the  vortex model w i t h  the  data on a 
spectral  basis,  particularly  since  the model  was developed to  calculate  noise 
which  depends strongly on the  timedependent behavior of the flow. The major 
difficulty w i t h  such  an  endeavor , however, is to  obtain  sufficient computed 
values to  yield an accurate  spectral  estimate; more canputer time is required 
as  the number  of vortices  increase. A s  mentioned before,  the model  was cow 
puted wi th  a nondimensional step  size of A t  = 0.05 which  had  been chosen to  
allow accurate  determination of the  mrtex  paths. For the  case  considered, 
t h i s  corresponds to a dimensional time step AT = 24.1 us and Nyquist fre- 
quency  of approximately 21 kHz. Direct  spectral  analysis of these  records 
produced spectra wi th  very l i t t l e  power  above 7 kHz i n  agreement w i t h  the 
experimental data. Thus, it became apparent that records w i t h  a step  size 
of 3 AT were adequate to  estimate  the  spectra, even  though t h i s  meant dis- 
carding  two-thirds of the computed values. A t  the leading-edge measurement 
location, record  lengths of 1000  values were obtained. The f i r s t  232 of these 
values were discarded  as being nonstationary and every third value of the 
l a s t  768  were selected  to provide one record of 256 values w i t h  a step  size 
of 3 AT. T h i s  record was analyzed by the  fast  Fourier transform (FFT) tech- 
nique to provide a spectral  estimate with 2 degrees of freedom, a Nyquist  fre- 
quency of approximately 7 kHz, and a bandwidth of approximately 50 Hz. A t  the 
trailing-edge  location, record lengths of 2000 values were obtained. The f i r s t  
464 of these  values were discarded as being nonstationary and every third value 
of the  last  1536 was selected  to  provide 4 consecutive  records of 128 values. 
These records were again  analyzed by the FFT to  yield  spectral  estimates wi th  
8 degrees of freedom, a Nyquist frequency of approximately 7 kHz, and a band- 
width of approximately 100 Hz. Typical spectra so obtained  are shown i n  f ig-  
ure 14. These are  spectra of the streamwise velocity canponent at  2X/L = 0.65 
for  three  different values of Y/D. Obviously, these  spectra  are highly varia- 
ble as one  would expect  for  spectral  estimates w i t h  so few degrees of freedom. 
However, these  spectra  are  reasonably  similar and appear to  contain  consistent 
peaks i n  the frequency range fran 0.6 to 3 kHz. 
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As can  be s e e n   i n   f i g u r e  9, the   exper imenta l  data also show reasonably 
similar spectra a t  both  the  leading-  and  trail ing-edge  posit ions.   Thus,  to 
r e d u c e   t h e   v a r i a b i l i t y  of t h e   s p e c t r a  predicted by t h e   v o r t e x  model and to 
better def ine   any  peaks  which  might be present ,  it was determined to normalize 
each spectrum by i ts  mean square  value  and to average  together  a l l  spectra for 
a particular veloci ty   canponent  a t  a particular downstream loca t ion .   In so fa r  
as t h e s e  records are independent ,   th is   averaging  nominal ly   yields  spectra wi th  
10  degrees of freedom a t  the  leading-edge  locat ion  and 72 degrees  of freedom 
a t  the   t r a i l i ng -edge   l oca t ion .  

F igu res   15 (a )  and 15(b) show t h e   r e s u l t i n g  spectra a t  t h e  t w o  measurement 
loca t ions .  Note t h a t   t h e r e  is also cons iderable   s imi la r i ty   be tween  the  spectra 
of t h e  streamwise and cross-stream veloci ty   canponents .  A t  the   l ead ing-edge  
loca t ion ,  where t h e   v o r t e x  model is r a t h e r   o r d e r l y  (see f i g .  l o ) ,  t h e  spectra 
are dominated  by  tremendous  low-frequency (<0.3 kHz) power, as mentioned pre- 
viously.  T h i s  is a p p a r e n t l y   a n   a r t i f a c t  of t h e   m r t e x  model due t o  represent-  
i n g   t h e   f i n i t e t h i c k n e s s   s h e a r   l a y e r  as an   i n f in i t e s ima l   shee t .  On the   o the r  
hand, a t  t he   t r a i l i ng -edge   l oca t ion ,  where the   vo r t ex  model has become more 
disordered, the  low-frequency power is much less dominant  and d i s t i n c t  p e a k s  
are p r e s e n t   i n   t h e   s p e c t r a  similar to those   observed   in   the   exper imenta l  data 
of f i g u r e  9. 

The presence of these t o n e s   i n  t h e  experimental  data is a result of t h e  
well-known s e l f - s u s t a i n i n g   o s c i l l a t i o n  of flow p a s t   c a v i t i e s .  T h i s  phenomenon 
has been  observed for many yea r s  and r e c e n t l y  has  been t h e  sub jec t  of an  excel- 
l e n t   r e v i e w  by R o c k w e l l  and  Naudascher (ref. 2 8 ) .   T h i s   o s c i l l a t i o n  is pres- 
en t ly   unde r s tood   i n  terms of a feedback mechanism. V o r t i c i t y  is shed from t h e  
leading  edge of t h e   c a v i t y  and  convects down t h e   l e n g t h   o f   t h e   c a v i t y  a t  sane 
convect ion speed Uc u n t i l  it impinges  on  the  t ra i l ing  edge.  A n  acoustic wave 
t r a v e l s  back upstream a t  t h e  speed of sound  and, upon reaching   the   l ead ing   edge ,  
causes  more v o r t i c i t y  to be shed. Th i s  explana t ion  l e d  B l o c k  (ref.  18) to  
develop t h e  r e l a t i o n ,  

(n = 1 ,  2, 3, . . .) 

f o r   t h e  Strouhal numbers a t  which   the   osc i l la t ions   occur .  Here n is t h e  mode 
number and Kv = Uc/uo is the   convec t ion   ve loc i ty  ratio.  Th i s  express ion  
agreed well w i t h  t he  tones   obse rved   i n  t h e  fa r - f ie ld   sound spectra radiated by 
t h e   c a v i t y  (ref. 19) , which occur a t  the  same f requencies  as t h e   c a v i t y  flow 
o s c i l l a t i o n  phenanenon. 

Of course ,   the   vor tex  model is i n c o m p r e s s i b l e ,   r e s u l t i n g   i n   a n   i n f i n i t e  
speed of sound, or conve r se ly ,   an   e f f ec t ive  Mach n m b e r  of zero.  Thus,  one 
would expec t   t he  acoustic ha l f  of t h e  feedback loop i n   t h e  model to occur 
ins tan taneous ly ,  so t h a t  frun equat ion  (1 2 ) ,   t he   fo l lowing  simple r e l a t i o n  
fo r   t he   expec ted   f r equenc ie s  results: 
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UO "UC 
f n = n - K v = -  

L  L 
(n = 1, 2, 3, . . .) (1 3) 

Taking Uc = 0.6U0, t he   va lue  most commonly employed, y i e l d s   t h e   f r e q u e n c i e s  
shown a t  t h e  bottom of f i g u r e  15(b) f o r   t h e  f i r s t  four osc i l l a t ion   f r equenc ie s .  
O r d i n a r i l y   o n l y   t h e   f i r s t   f o u r   c a n  be observed  experimental ly   ( ref .  1 9 ) .  These 
f requencies  are harmonics  with  the  fundamental   occurring a t  about 0.62 kHz. 

As can be seen  f rom  the spectra of f i g u r e   l S ( b ) ,   t h e   v o r t e x  model also 
exh ib i t s   p re fe r r ed   f r equenc ie s   i n   t h i s   r ange .   In   f ac t ,  a fundamental  frequency 
close to  0.7 kHz and its f i r s t   t h ree   ha rmon ics   appea r  t o  be p resen t  as well as 
an   unexpla ined   osc i l la t ion   near  1 kHz. As t he re   can  be l i t t l e  doub t   t ha t   t hese  
p e a k s  are real ,  s i n c e   t h e  spectral estimates have  approximately 72 degrees  of 
freedom, t h e   v o r t e x  model does appear to p r e d i c t   t h e   s e l f - s u s t a i n i n g   o s c i l l a t i o n  
phenomenon of t h e   c a v i t y ,  as speculated by R o c k w e l l  and  Naudascher (ref. 28). 
However, t he   f r equenc ie s  are s l i g h t l y   s h i f t e d .  

I n   f i g u r e  1 6 ,  t h e  spectral densi t ies   of   the   dimensional   (nonnormalized)  
streamwise v e l o c i t y   f l u c t u a t i o n s  as  measured  and as predicted by t h e  model are 
canpared at  2X/L = 0.65  and Y/D = 1 .35 .  This   po in t  was chosen as one  where 
t h e  mean s q u a r e   v e l o c i t y   f l u c t u a t i o n s   ( i n t e g r a l  of the  spectrum)  predicted by 
t h e  model nearly  agreed  with  those  measured,  and  thus  the  frequency  canparison 
would no t  be dis tor ted by d i f f e r e n c e s   i n  power l e v e l s .  As can be seen ,   the  
vor tex  model tends  to underpredic t   the  spectral l e v e l s  a t  the  higher   f requen-  
cies which is compensated by an   overpredic t ion  a t  t h e  lower frequencies .   This  
is to be expected s i n c e   t h e r e  is no  mechanism i n   t h e   v o r t e x  model f o r   t h e  cas- 
cade  of  energy to h igher  wave n m b e r s   t h a t  occurs i n  true turbulent   f lows.  
O the r   t han   t h i s  power " t i l t "  a n d   t h e   s h i f t   i n   t h e  p e a k  f r equenc ie s  due to  
incompress ib i l i t y ,   t he   spec t r a l   shapes  are reasonably similar. This  result  
e n c o u r a g e s   f u r t h e r   r e s e a r c h   i n t o   t h e  use of vor tex  models to  simulate turbu- 
l ence  and to  c a l c u l a t e   t h e   r e s u l t i n g   n o i s e   r a d i a t i o n ,   p a r t i c u l a r l y   i f   t h e  
physics  of the   ene rgy  cascade can be b u i l t  i n t o   t h e  model i n  sane fash ion .  

F ina l ly ,   w i th   r ega rd  to  the  turbulent   energy  spectrum, it is of i n t e r e s t  to  
de te rmine   t he   e f f ec t  of the   c i r cu la t ion   decay  ra te  cons t an t  K on   the   d i s t r ibu-  
t i o n  of tu rbulen t   energy .  Recall t h a t   t h e  mean v e l o c i t y   p r o f i l e s  were very  sen- 
s i t i v e  to  t h e   v a l u e   o f   t h i s  parameter. F igu res   17 (a )  and 17  (b)  show t h e  normal- 
ized spectra of t h e  streamwise and cross-stream v e l o c i t y   f l u c t u a t i o n  components 
a t  2X/L = 0.65 f o r  two values  of the  decay ra te  cons tan t :  K = 0.001 25, t h e  
value used i n   t h e  model, and K = 0.000625, one-half   the  previous  value.  Since 
t h e  mean v e l o c i t y  is c r i t i c a l l y   d e p e n d e n t  upon K ,  t h e   f l o w   i n  t h e  l a t t e r  case 
is f a r  from correct. However, it can be s e e n   t h a t   t h e   o v e r a l l   s p e c t r a l   s h a p e s  
are t h e  same, the   on ly   d i f f e rence   be ing  a s h i f t   i n   t h e   t o n a l   f r e q u e n c i e s .   T h u s ,  
it can be concluded   tha t   the   c i rcu la t ion   decay  ra te  parameter has  very l i t t l e  
effect on t h e   d i s t r i b u t i o n  of turbulent   energy.  
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CONCLUSIONS 

A vortex model of   tu rbulen t   f low  in  a rectangular   cavi ty   has   been  devel-  
oped and subjected to extensive  comparison  with  experimental  data. This   s tudy  
has resulted in   the   fo l lowing   conclus ions :  

1 . When v o r t i c i t y   g e n e r a t i o n  on t h e  walls of t h e   c a v i t y  is t aken   i n to  
account ,   the   vortex model does reasonably well i n   p r e d i c t i n g   t h e  mean v e l o c i t y  
p r o f i l e s  of t h e   t u r b u l e n t   c a v i t y  flow, p a r t i c u l a r l y   i n   r e g i o n s  where the   f low 
is essent ia l ly   two-dimensional .  The p red ic t ion  deteriorates in   regions  where 
the   f low becomes more fu l ly   th ree-d imens iona l .  

2. The vortex model tends   genera l ly  to overpredict the   t u rbu len t   i n t en -  
sities, again  being more accura t e   i n   r eg ions  where t h e  flow is n e a r l y  t w o -  
dimensional b u t  high  by a f a c t o r  of  approximately 2 as three-dimensional 
e f f e c t s  become impor tan t .   This   charac te r i s t ic   should  be g r e a t l y  improved i f  
a means for energy   t ransfer  to  the   th i rd   d imens ion  could be inc luded   in   the  
model i n  a c o m p u t a t i o n a l l y   e f f i c i e n t  manner. 

3.  The vortex model conta ins   unrea l i s t ic   low-f requency  power, e s p e c i a l l y  
where t h e  model is order ly .  The importance of t h i s  power is grea t ly   d iminished  
a s   t he  model becomes disordered.  

4. The vor tex  model appears  capable of reproducing  flow phenomena such as 
the   cav i ty   f eedback   o sc i l l a t ion .  However, f requencies   are   changed by the  
incompressible   nature  of the  model. 

5. The spectral d i s t r i b u t i o n  of power predic ted  by t h e  model is q u i t e  
reasonable  when the  model is disordered. There is a tendency  for   overpredic-  
t i o n   a t  lower  f requencies   and  underpredict ion  a t   h igher   f requencies   because 
t h e  model does not   include  an  energy cascade mechanism. 

Overa l l ,  t h i s  s tudy   i nd ica t e s   t ha t   vo r t ex  models mer i t   f u r the r   r e sea rch   a s  
means of s imula t ing   tu rbulen t  flow and of c a l c u l a t i n g   t h e   r e s u l t i n g   n o i s e  gen- 
e ra t ion .  The most c r u c i a l  area for fu r the r   r e sea rch  is inclusion  of   three-  
dimensionality  and  energy cascade i n  a c o m p u t a t i o n a l l y   e f f i c i e n t  manner.  Fin- 
a l l y ,  t he  s i m i l a r i t y  between the   vor tex  model results and  the  actual   measure-  
ments  in a tu rbu len t  flow sugges t s   t ha t  a part of the  t u r b u l e n t  flow is nea r ly  
determinis t ic ,   "determined" by t h e   i n i t i a l  and  boundary  conditions for t h e  flow. 
For example,   every  real izat ion of t h e   t u r b u l e n t   c a v i t y  f l o w  includes a l a r g e  
v o r t e x   w i t h i n   t h e   c a v i t y   i t s e l f .  I t  is t h i s  l a r g e s c a l e   b e h a v i o r  of t h e  flow 
which is being  reproduced  by t h e  vor tex  model - quite p o s s i b l y   t h e  same behavior 
t h a t  has come to be called t h e   " l a r g e s c a l e  structure" of the  f low. 

Langley  Research  Center 
National  Aeronautics  and  Space  Administration 
Hampton, VA 23665 
J u l y  20, 1979 
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APPENDIX 

SYMBOLS 

c a v i   t y   d e p t h  

canplete e l l ipt ic  i n t e g r a l  of second  kind 

incomplete e l l ip t ic  i n t e g r a l  of second  kind 

c i r c u l a t i o n   d e c a y  ra te  

convec t ion   ve loc i ty  r a t io  

c a v i t y   l e n g t h  

Mach number 

number of mrtices i n   f l o w  

S t rouha l  numke r 

p o i n t   i n  space 

spectral d e n s i t y  of v e l o c i t y   f l u c t u a t i o n s   i n  

ambient temperature 

convect ion  speed 

to t a l  ve loc i ty   canponents  

f ree-s t ream  ve loc i ty  

ve loc i ty   induced  by vortex  segment 

c a v i   t y  w i  d t  h 

x,y dimensional Cartesian coord ina tes  

a p o s i t i o n  of t ransformed  cavi ty   corner  

d nondimensional  cavity  depth 

fn  f requency of mode n 

h normal d i s t a n c e  

R disp lacement   d i s tance  

n mode index 
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P 

Pa 

t 

U i  

X i  

X I  Y 

z 

a 

B 

B '  

rXY 

AT 

A t  

€ >  

* 

t o t a l  pressure  

ambient  pressure 

time 

f luc tua t ing   ve loc i ty   canponen t s  

Car tes ian   coord ina tes  

nondimensional   Cartesian  coordinates  

complex v a r i a b l e  

inverse  of  Reynolds number 

angle  

cons tan t   in   t ransformat ion  

angle  

c i r c u l a t i o n  of i t h  w r t e x  

c i r cu la t ion   i n   d i r ec t ion   a long   w id th  of c a v i t y  

c i rcu la t ion   in   xy-p lane  

dimensional time s tep 

nondimensional  t ime  step 

random displacements  

Car tes ian   coord ina tes   in   t ransform  p lane  

complex p o t e n t i a l  

canplex   var iab le  

stream func t ion  

total wr t i c i t y  

time average 

ensemble  average 

ccmplex  conj  ugate 
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TABLE 1.- TEST  CONDITIONS FOR VELOCITY SURVEYS 

[Ta = 18.3O C, pa = 761.2 mm Hga 1 

4 
5 

Cavity dimens ions , 
Q11 

L W D 

4.0 5.08 5.11 
5.11 
3.1 9 

7.5 3.19 
16.0 3.1 9 

L/D Test Mach numbers 

0.78 0.11 6  0.226  0.362 
2.35 .146 .246 

.78 .116 .246 
2.35 ,116 .246 
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Figure 14.-  Spectral  density of streamwise  turbulent  intensity  obtained 
fran  mrtex  model resu l t s .  W / L  = 0.65 .  
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Figure  15.- Normal ized   spec t ra l   dens i ty  of t u r b u l e n t   i n t e n s i t y   o b t a i n e d  
from vor tex  model r e s u l t s .  
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(b) At ZX/L = 0.65. 

Figure 1 5 .- Concluded. 
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f luc tua t ion  at 2X/L = 0.65 and Y/D = 1.35. 
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(a) Normalized spectral   density of streamwise  turbulent  intensity. 

Figure 17.-  Canparison of normalized  spectral  densities  for two values 
of circulat ion  decay  rate  K. 

43 



K = .00125 
K = .000625 " 

t 

10-2 . I I I 1 I 1 1 1  I I I I I 1 1 1  I I I 1 I I l l  

10-2 10-1 100 101 
Frequency, kHz 

(b) Normalized s p e c t r a l   d e n s i t y  of cross-stream t u r b u l e n t   i n t e n s i t y .  

Figure 17.- Concluded. 
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